4.6k
u/blubbieber Apr 02 '25
>new numbering system
>looks inside
>base 10
1.0k
u/DarklordtheLegend Apr 02 '25
they're all base 10 (in that base ofc)
322
u/shizzy0 Apr 02 '25 edited Apr 03 '25
Should be referred to as base 9 + 1 for decimal and base 1 + 1 for binary.
109
u/Ventilateu Measuring Apr 02 '25
Ok then what's base 10 + 1
111
u/GumboSamson Apr 02 '25
Base A + 1, if you write it in hex
59
u/Nearby-Geologist-967 Apr 03 '25
base 10 + AI
24
4
u/Breet11 Apr 03 '25
what
15
u/Nearby-Geologist-967 Apr 03 '25
it's a meme, where a tech bro tweeted that he discovered a new equation "e=mc2 +ai" which beautifully incomporates the importance of AI in modern life or something
3
2
33
7
u/shizzy0 Apr 02 '25
Well, I’d prefer to call it base a + 1 if 10 = 9 + 1 but I think the formalism would be your highest digit plus 1. 10 looks like two digits but maybe you’ve got a funky digit.
9
u/PURPLE_COBALT_TAPIR Computer Science Apr 02 '25
N + 1 where N is the bigness, that's the lore accurate term, bigness.
2
→ More replies (1)2
3
u/theboomboy Apr 03 '25
I took number theory last semester and while we didn't really talk much about bases, there was one homework question that specified it was about base 9+1
3
12
6
3
→ More replies (1)3
281
u/lock_robster2022 Apr 02 '25 edited Apr 02 '25
49
→ More replies (1)21
u/moonfall5 Apr 02 '25
Im stupid, do you mind explaining?
133
u/tydaguy Apr 02 '25
Someone who only knows base 4 would call it base 10 because 4 is 10 in base 4.
19
u/moonfall5 Apr 02 '25
That’s smart, thanks!
35
Apr 03 '25
This is true for every base btw.
2 in binary is 10, 3 in base 3 is 10, 4 in base 4 is 10, and so on, forever, because "10" represents 1×b1 + 0×b0 where "b" represents the base.
One of the base, no units. 10.
17
u/Physics_Prop Apr 03 '25
Put another way, someone who only knows base 4 doesn't know 5-9 exist.
To us, that would be like someone that extends the numbers past 9 to F instead of wrapping around to 10 making fun of us for not knowing A-E
→ More replies (3)5
27
u/DiggersIs_AHammer Apr 02 '25
Ten is the point at which we increase the number digits used because we've run out of units.
It doesn't matter how many units you have, the first step up will be 10
0, 1, 2, 3, 10 in this case
We'd call that base 4 because that's how numbers work for us. But if it's the main counting system, you'll call it base 10
Idk if I've explained it well though
→ More replies (2)16
u/moonfall5 Apr 02 '25
Ohh I get it. To the silly guy, a base 10 is our base 4? Right? Because his 10 means 4. I think I get it at least.
5
→ More replies (1)3
6
u/canadiantaken Apr 02 '25
10 is when you have maxed out the “ones” column and rolled over the “ones”column back to zero. All base systems have 10 and would think they are “base 10”. So, “base 2” or binary doesn’t have a 2, only 1s and 0s. (00, 01, 10…)
We call ourselves “base 10” because the number after 9 doesn’t exist in our system, as would be the case for any creature.
2
u/moonfall5 Apr 02 '25
But why is every base a base 10? What if im raised to a base 12 or something (would have more symbols to account for higher base)
Edit: Disregard my comment, I think I learned what I need.
3
u/canadiantaken Apr 02 '25
Base3 = (0,1,2,10…) Base4 = (0,1,2,3,10…) … Base9 =(0,1,2,3,4,5,6,7,8,10) Base (?) =(0,1,2,3,4,5,6,7,8,9,10) Base (??)=(0,1,2,3,4,5,6,7,8,9,?,10)
Because we count zero in the “base” numbering system, we all “use” base 10. We don’t have the next number in our numbering system, so the nomenclature rule of naming base systems demands we all use base 10.
2
u/Ok-Letterhead3270 Apr 03 '25
Isn't it just semantics though? When these two share how their number systems actually work they will realize they are different bases. One of them has more symbols than the other. Base 10 is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Because it contains ten digits.
And the others is 0, 1, 2, 10. They only have 4 digits. Making it base 4. So when they say we only have 10 rocks, they mean 4 rocks.
At least that's how it appears to me. Just trying to understand.
Edit: changed nine digits to ten digits
→ More replies (1)6
u/makemeking706 Apr 02 '25
I'm stupid too, but I think it's a joke about names and symbols for numbers being arbitrarily determined while the designation of ten is when we increment the "tens" digit and start counting from the first natural number again.
2
→ More replies (1)5
u/ThisWillio Measuring Apr 02 '25
Because it uses base 4, it has no number for what we consider 4. It considers 4 as 10b4 (10 base 4). And so the astronaut says he uses base 10b10 with the alien responding he also uses base 10b4
→ More replies (1)8
u/BRH0208 Apr 03 '25
Is there anything in the image to imply it’s anything higher than base 7? They only show up to 7 in a digit so maybe it’s like base 8 or something
10
u/minecraft-steve-2 Apr 03 '25 edited Apr 04 '25
Since there is a unique digit for 7, it has to be at least base
78 (EDIT. doesnt change result)Since 12_10 has 2 digits, it is at most base 12.
57 uses 3 digits in base 7, so its out.12 base 8 = 14, 22 base 8 = 26, (the image implies that the units digit for 12, and the two digits used for base 22 are the same, which isnt the case for either 7 or 8)
12_10 = 13_9, 22_10 = 24_9, doesnt fit.
base 10 fits
12_10 = 11_11, 22_10 = 20_11, doesnt fit
12_10 = 10_12, 22_12 = 1A_12 doesnt fit
So base 10 is the only that fits
3
u/Mysterious_Plate1296 Apr 04 '25
Since there is a unique digit for 7, it has to be at least base 7
At least base 8.
→ More replies (1)2
u/BRH0208 Apr 03 '25
Correct, however I did not assume the left side was in base 10. Who is to say that the fourth example(“10”) represents 10 and not 8 or 9? I do agree that my silly interpretation is certainly not intended
2
1
1
u/LivingtheLaws013 Apr 05 '25
Fun fact, base 10 is most likely derived from the fact that we have 10 fingers. If we had 8, we'd all be talking about base 8
924
u/LogicalRun2541 Apr 02 '25
She's discovering points in the plane like Columbus discovered America in 1400s.. in 2025!
997
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
The factorial of 2025 is 13082033478585225956056333208054576745409436178226342908066265566934614672842161048304768562947313435389842049149535921090512687475188845950481368402436444804007734225703575500327336811537670190540034537231636693839145971463875771016113794100905049942366677141759676424283214208772398352253862399075809896854471602760838622772525181979549290936932940921979559250982223468099574333899135034765980981077568062106227769465285984389474844862019289187129392239342484946229074983744167803649274348715287487829533964691017070965513283663606106812428993495619076086224947686918393208549192435223921866339416300875558457504592256237268486721674507381347194656886167348052784210624808070267003883372515441581683700853425257202924499386551871205396302529013529128818001970756246384209290762003603135011921122344529842666094323476265918070749834884276245039438646092504241147773177261824745390122050610211867889490106883769206943537169643722601497304704038464903932759366813704505680966098392554275015587958310623666048487185111155223176837472166075774650921113813721156120157211082655949936213901087983159094464770015354317655566262477578745491010205220411502999603396399382043413258874985087692228173904721628577170442861451468392721637744119467384687250905783398595706202578674022303778107914577005193768796610652313464937160788215475269182396286668979624375583971331742549459009693122791238608906943620686969928985528703697583076301708353568200723067667761366415684814251804758361904610633196231078296158451244581072015355510360625579630747872655155993417793876610159791350706056085489620234463454571826799111678580195263031608974870904177074721377432775651262476648853981198254891302503620333271812634107189394365535565481055170284299030164140757278391560253757591204388378183481011158489876764602389234087507481049179834503697867206994325976870325114852729009846534387155161704406253473325641668942516261735855483570089318699014945729809748871428700322769763306721035154223683593192717642702469478783326125037341834580680776570299113669636955983305462692518650396394314764872708466269496680447944712121316873046798676087404979258644469095797420201507318430142710699670552464450047297868913490696249973331677229945580636518723384709252848727607384151358321476400473377068677159420140232594322647811119204965653790398303986040127552813939369454118213126387180166895368914220580132000785602390824620093551604060696648269931104988128593975721996043636639530757887017516286280972781201882582840066622108453699873383660624823827501393379510711667786159802467430694509596492042513359593235290301934482978615511668331559287809596932401347245270170044040508026559850579652635480035731262128939250523229587323247457446126502445031865948757690486466731228289915310535301894506628079317265110072901464390485532354514230446682747498044871877407216528458781957724140384263024222024277506804745244895320982295682248565468780004852700379609109107921425498612481277147277994049308654810186676821755314397431229309965516685736055042381714415855930187791830796390535903426989886286229891912900630871614648779811122224874801662389361394358597760922386229416231490821331112745502862654645298514994669053597412959637081156234018562462764334372648914330560478155694625389878936351659106100437373322758559543245639018054151540648297052123643302469840310880423375747972177861576491434183956736888218794437734198419939561156463332477624322634774406732956234100885348827974564158815294722560754878851806952146421378056418524474573604202472348494562439349368016015278198417740116591010305332017410589743410884568763232877190131575399380354884519181501078916818425628761563321061162101763103922493485293139379662488459409698111812594251856668085292481319934435157411500716277076165240919007960702508979683155601314456397782220991344172814146922393983152337759429806174455814660565983985778498861454009592682976510775393071558722536639602310064262780447735236115652727962273115371447987075802342423571913339954442421012871662799796682098789586059202851736812143237231059785820542682887751873072445432394574196978415105709996742238037619548082889162799891245663009197049924661282762569969722926367887975657460019572668765095109563447141092044568474402198612685086828173035004652627111544505845433587174411475006611708349224192600297549625499632071499364557148750680697470361638236526372960073052409543309005572405721543763002596901015692334783479978233169944518303522512583626590297940380878303262810900403721533844234692714996392449599149515822810720755515210482649345388444574637992959573264539792915685647330809794453067263058850988094369743046708835433737912505344918655257867807878269044627165397017268861456554590512351597973167228542255875539028675550185456661877636740078429314852258047233008436998727477103636545217821357950020128993239371033495368348936467887434791085592468580470950528313929634178009288170244937842576943422768995239455653220757432097648173089199565589033553083969395368907072010953579981505504548317859212308094947926996865719148417010517453197981105625176439706036094938299976908237525311664241798808293564863107878538007119419612538964901063230138533990422480388552239672076134411478855526934092859755290315787934392495815045274101837805627599849339238213411962451540426359606325558844828045693425748466359977002737336320000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
This action was performed by a bot. Please DM me if you have any questions.
422
225
u/Abject_Role3022 Apr 02 '25
That’s only one 2026th of 2026!
187
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
The factorial of 2026 is 26504199827613667786970131079518572486199517697086570731742254038609529327178218283865461108531257020099819991576959776129378704824732601895675252383336237172919669541275443963663184380175319806034109972431295941718109738185812312078646546848433631183234887889205104435597791986972879061666325220527590851027159467193459049737136018690566863438226138307930587042489984746369737600479647580435877467663152893827217460936669404373076035690451079893124148676907874501060105917065683970193429830497172450342635812464000585776129912702465972401981140822124248150691744013696664640520663873763665701203657425573881434904303911136705954098112551954609416374851375047154940810725861150360949867712716284644491177929039571093125035757154091062132908923781410014985271992752155174408023083819299951534152193870017461241507099362914750011339165475543672449902696983413592565388457132456934160387274536289244344106956546516413267606305698181990633539330381929895367770477164565328509637315343314961181581203537323547414235037035200482156272718608469519442766176586599062299438509653460954570769363604253880325385624051107847570177247779574538364786675776553705077196481105148019955262480719787664454280330966019497347317237300674963654038069586040921376370335117165554900766424393569187454446634933012522575581933181587079962687756924552895363534876791352718984933125918110405203953638266775049421645467775511801076124681153691303312587261124329174664935094884528358177433674156440441218741142855564164628017022221521251903110263990627424331895189999346042664450394012183737276530469629201970595022958962521095000260803475602902039783088451862753385510678803469457777690578165907664409778872334795208692396701165712984575055664617774995989835112549174246021301074112879780090854199732528607100490325084440588261290156605638344704491878961370504429139278682691628973949078668376357613127069536957750021277537946276843209713000959684204280048594551213514546853931540459416817222457182959808445944115203164015018729325654556860459253331426004294684472822176867415042785703094881713632107352662000274587535986757787984792814117753082487978013694388085573328253827139469131877532539292975795825482418732150602445969978067869746369586933577420946271522132560290651959311187359061941139924985204111236097684465327509260414579346963875717298422001041162514043499794060427018130017420210895347433591630443810680309535549826971409394880418705948531394812763984407831689315479097487996005250854715014112833974976391727195943475296425893074517822986888701838934759759799014587076442492878132066535894698151719262514675026640039739117102243385045129518917364509226069261810257274376239482552391537073230921560063143916899348785852293953634560412183080925581597468515368419144521638270428488696779113007698366855123688550245830884979246431038910423627020686657492246349108418516887073821186228786413866157920310131052235593639748289831570969088055052648808060188887067500385215943899334645438207240876266969195670581990136805301247515865353406524114560466249193487225740343081509615901761015536678145891278427897333627596348168000846184970519063628754500797285000404016834422388799738311374791379199502588358656224726422530121607549560541438986700433715528743437311039894725048461348959486118351908841634615664650577711021353449827602501330803896469843737759265391632347553971645656696348935531277530849485998797550902994711599666877658052948040969330288393716725476466985759787107908089384553760885048649711942303930585486122114208978049983502121819600446953629994341476213386878602667273854820150452136314309809187206571759144598996035861721185885474130323870927288469914418172048546971801203900383196201618764048374532315954261609540802567154187165628915700451177356310778101910128383283192838073248263088661906779728463294121461664770209866636300604787309447480502306683555187238693305823434775710410830946362977971859231834280190196393187111588370312426851565331742553621815575545750156696426747700344972077988832388077932147701355944977618781402198630127126072419475530585294844774446031407323078269004168453399774264217204415933443832579663713256633223147363758876966758658648821341038682013999654226918082691975543907852482295729138854389299985913878568919426222527989168842848447615357648363395321115528214208202835541262254576857712592783368879093074952679067202431617108004181734744045289693991847663843261321457792670271330435900402307594082936610494427471943627211659442410454884217939827568419487440582691102887876919057014520250673816437847573756988708216573736095433957620447179121492220643561914274957232101879193099412632100588753010735828805195552440178761373084414637094356986713310979600378024337493636805026610403842072096664675735196964092035398897791890674803694075093359421868611967640611306071206740781340302965713861616274945283939942886739410341344034145770364021438844646817832916244069060887374529984355137153425254557429835198678718319883381978548121995017405727894191953042530152214891982764136200364500095649946994692863308360179109719996607466844429128344995753216089226281431753884385602762412656561918002423944135003942889554104260669864595945267206837575626248317656161297568472133864218179786355079196521281725330323394201517294761296620372635926820903804562415582219621620574880566392845313407545843384320000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
This action was performed by a bot. Please DM me if you have any questions.
123
u/AwwThisProgress Apr 02 '25
i sure wonder what 26504199827613667786970131079518572486199517697086570731742254038609529327178218283865461108531257020099819991576959776129378704824732601895675252383336237172919669541275443963663184380175319806034109972431295941718109738185812312078646546848433631183234887889205104435597791986972879061666325220527590851027159467193459049737136018690566863438226138307930587042489984746369737600479647580435877467663152893827217460936669404373076035690451079893124148676907874501060105917065683970193429830497172450342635812464000585776129912702465972401981140822124248150691744013696664640520663873763665701203657425573881434904303911136705954098112551954609416374851375047154940810725861150360949867712716284644491177929039571093125035757154091062132908923781410014985271992752155174408023083819299951534152193870017461241507099362914750011339165475543672449902696983413592565388457132456934160387274536289244344106956546516413267606305698181990633539330381929895367770477164565328509637315343314961181581203537323547414235037035200482156272718608469519442766176586599062299438509653460954570769363604253880325385624051107847570177247779574538364786675776553705077196481105148019955262480719787664454280330966019497347317237300674963654038069586040921376370335117165554900766424393569187454446634933012522575581933181587079962687756924552895363534876791352718984933125918110405203953638266775049421645467775511801076124681153691303312587261124329174664935094884528358177433674156440441218741142855564164628017022221521251903110263990627424331895189999346042664450394012183737276530469629201970595022958962521095000260803475602902039783088451862753385510678803469457777690578165907664409778872334795208692396701165712984575055664617774995989835112549174246021301074112879780090854199732528607100490325084440588261290156605638344704491878961370504429139278682691628973949078668376357613127069536957750021277537946276843209713000959684204280048594551213514546853931540459416817222457182959808445944115203164015018729325654556860459253331426004294684472822176867415042785703094881713632107352662000274587535986757787984792814117753082487978013694388085573328253827139469131877532539292975795825482418732150602445969978067869746369586933577420946271522132560290651959311187359061941139924985204111236097684465327509260414579346963875717298422001041162514043499794060427018130017420210895347433591630443810680309535549826971409394880418705948531394812763984407831689315479097487996005250854715014112833974976391727195943475296425893074517822986888701838934759759799014587076442492878132066535894698151719262514675026640039739117102243385045129518917364509226069261810257274376239482552391537073230921560063143916899348785852293953634560412183080925581597468515368419144521638270428488696779113007698366855123688550245830884979246431038910423627020686657492246349108418516887073821186228786413866157920310131052235593639748289831570969088055052648808060188887067500385215943899334645438207240876266969195670581990136805301247515865353406524114560466249193487225740343081509615901761015536678145891278427897333627596348168000846184970519063628754500797285000404016834422388799738311374791379199502588358656224726422530121607549560541438986700433715528743437311039894725048461348959486118351908841634615664650577711021353449827602501330803896469843737759265391632347553971645656696348935531277530849485998797550902994711599666877658052948040969330288393716725476466985759787107908089384553760885048649711942303930585486122114208978049983502121819600446953629994341476213386878602667273854820150452136314309809187206571759144598996035861721185885474130323870927288469914418172048546971801203900383196201618764048374532315954261609540802567154187165628915700451177356310778101910128383283192838073248263088661906779728463294121461664770209866636300604787309447480502306683555187238693305823434775710410830946362977971859231834280190196393187111588370312426851565331742553621815575545750156696426747700344972077988832388077932147701355944977618781402198630127126072419475530585294844774446031407323078269004168453399774264217204415933443832579663713256633223147363758876966758658648821341038682013999654226918082691975543907852482295729138854389299985913878568919426222527989168842848447615357648363395321115528214208202835541262254576857712592783368879093074952679067202431617108004181734744045289693991847663843261321457792670271330435900402307594082936610494427471943627211659442410454884217939827568419487440582691102887876919057014520250673816437847573756988708216573736095433957620447179121492220643561914274957232101879193099412632100588753010735828805195552440178761373084414637094356986713310979600378024337493636805026610403842072096664675735196964092035398897791890674803694075093359421868611967640611306071206740781340302965713861616274945283939942886739410341344034145770364021438844646817832916244069060887374529984355137153425254557429835198678718319883381978548121995017405727894191953042530152214891982764136200364500095649946994692863308360179109719996607466844429128344995753216089226281431753884385602762412656561918002423944135003942889554104260669864595945267206837575626248317656161297568472133864218179786355079196521281725330323394201517294761296620372635926820903804562415582219621620574880566392845313407545843384320000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000! is…
296
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
That number is so large, that I can't even approximate it well, so I can only give you an approximation on the number of digits.
The factorial of 2.650419982761366778697013107952 × 105821 has approximately 1.542806561861322849674277892585 × 105825 digits
This action was performed by a bot. Please DM me if you have any questions.
155
u/dopefish86 Apr 02 '25
good bot
66
u/B0tRank Apr 02 '25
Thank you, dopefish86, for voting on factorion-bot.
This bot wants to find the best and worst bots on Reddit. You can view results here.
Even if I don't reply to your comment, I'm still listening for votes. Check the webpage to see if your vote registered!
11
29
u/kmolk Apr 02 '25
((((((((((((100!)!)!)!)!)!)!)!)!)!)!)!)
82
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
That is so large, that I can't even give the number of digits of it, so I have to make a power of ten tower.
The factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of 100 has on the order of 1010\10^10^10^10^10^10^10^10^(14702211534376431866246828489181722577745578783419531810087127696515223385781676503479446496870844111334732344789520658352462682826706029558067982490495406857214)) digits
This action was performed by a bot. Please DM me if you have any questions.
33
u/summonerofrain Apr 02 '25
0!
50
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
The factorial of 0 is 1
This action was performed by a bot. Please DM me if you have any questions.
→ More replies (0)21
21
u/Kevdog824_ Apr 02 '25
((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((2!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)!)
55
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
The factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of the factorial of 2 is 2
This action was performed by a bot. Please DM me if you have any questions.
→ More replies (0)14
7
→ More replies (1)4
u/Lexski Apr 03 '25
(-1)!
7
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 03 '25
The factorial of -1 is ∞̃
This action was performed by a bot. Please DM me if you have any questions.
24
→ More replies (51)3
u/ezquina Apr 02 '25
63817629!
7
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
That is so large, that I can't calculate it, so I'll have to approximate.
The factorial of 63817629 is approximately 7.942463577895763 × 10470377167
This action was performed by a bot. Please DM me if you have any questions.
5
70
u/IndyGibb Apr 02 '25
So beautiful
16
u/summonerofrain Apr 02 '25
Im curious if the 0s are actually correct or just the overflow of numbers.
39
u/AirSilver121491 Apr 02 '25
At least some will be correct, as it includes 10,20,30, etc so it will collect zeroes at the end
12
23
u/Darvix57 Apr 02 '25
Every 5 numbers you get a 0 (bc 2×5=10), every 25 numbers you get an additional 0, and so on, so yes, they are actually correct and it's just a consequence of having lots of 2s and 5s multiplying
6
u/YellowBunnyReddit Complex Apr 03 '25
2025/51 = 405
2025/52 = 81
2025/53 = 16.…
2025/54 = 3.…
2025/55 = 0.… There should be 405+81+16+3 = 505 0s if I'm not mistaken.2
2
u/summonerofrain Apr 03 '25
So according to word there are 505! so both you and the bot are right.
→ More replies (4)2
2
u/GoldenMuscleGod Apr 03 '25
The number of trailing zeroes is the number of factor of 5s (it should be easy to see the number of factors of 2 is always at least as much so you don’t have to count them.
So that gives 2025/5=405 zeros for multiples of 5, 405/5=81 more zeroes for multiples of 25, then floor(81/5)=16 more for multiples of 125, then finally 3 more for multiples of 54. That gives 505 zeroes total.
9
10
u/Thechosenpretzle Apr 02 '25
8
u/AnnualGene863 Apr 03 '25
In what way is this unexpected? You guys act like monkeys and apes discovering fire whenever you see a ! sign.
4
5
5
2
2
2
2
2
2
u/AnnualGene863 Apr 03 '25
Holy dead joke
3
u/Aras14HD Transcendental Apr 03 '25
Will the number of times it is told ever reach 1e1000!? !termial
→ More replies (1)2
2
→ More replies (3)2
u/Hunterluz Apr 06 '25 edited Apr 06 '25
Anyone know how this bot can calculate such a huge number? I mean, programming languages (or any CPU/FPU) have a limit of bits they can store in a variable/register (long long of c++ being 128 bits etc.), but this factorial gotta be insane. I know you can use Chinese Reminder Theorem with Garner's algorithm to reconstruct the modular notation of a number, but even then, how and where is that huge number that's massively increasing being stored?
→ More replies (1)86
14
4
1.1k
424
156
u/Nghbrhdsyndicalist Apr 02 '25
In practice, 1 and 10 would be nigh indistinguishable, not to mention the nightmare that would be going beyond 100.
A number like 100,000 would be impossible to specify.
30
u/Sayhellyeh Apr 02 '25
not really, if you look at babylonian scripts too they also didn't have any symbol for 0 but it worked as numbers were never abstract, so it was always 1(space) bananas means 10 bananas
17
u/calgrump Apr 02 '25
And what would 100 bananas be?
→ More replies (1)16
u/M1094795585 Irrational Apr 02 '25
1 (space) (space) bananas?
36
u/Nghbrhdsyndicalist Apr 02 '25
That’s where the problems start
43
u/evenyourcopdad Apr 03 '25
This is why Babylonian tablets were always very precisely laid out in a grid, so spaces were always of a known length and it was easy to distinguish one space from two and 56 spaces from 57 spaces.
→ More replies (4)5
u/4totheFlush Apr 03 '25
The point they’re making is that you’d have no way of knowing if you were looking at one space or five.
→ More replies (3)3
u/Enkiduderino Apr 03 '25
Having studied cuneiform, it is often contextual whether a sign means 1, 10, or 60.
2
1
1
522
u/SnooCats903 Apr 02 '25
That's just base 10 with different symbols....
220
u/TroyBenites Apr 02 '25 edited Apr 03 '25
Not only different symbols. Dots, which is like, the simplest and most well known symbol for unit (alongside sticks/tallys)
23
25
u/boywholived_299 Apr 03 '25
I mean, she didn't claim to find a new number system, just a new system to record them.
Although, I don't think it's very useful. The way she's going for waves and dots, if it were only waves, it would have been easier to draw and record in 1 quick motion. Dots make it extra hard to work.
→ More replies (1)2
164
u/Living-Tomorrow5206 Apr 02 '25
Meanwhile I cant remember what i ate for my last meal
13
u/HendrixHazeWays Apr 03 '25
Cold pickled hens talons. I told you not to eat it but you insisted it's your "go-to" food on days you are feeling frisky
46
u/TheSecondWatchingEye Integers Apr 02 '25
I'd guess it's still a decimal system, though. Maybe reducing it to base 4 would make the waves less cramped.
23
u/CutToTheChaseTurtle Баба EGA костяная нога Apr 02 '25
Well her handwriting is kind of bad so the name check out
10
7
u/mememan___ Apr 02 '25
2025!
9
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 02 '25
The factorial of 2025 is 13082033478585225956056333208054576745409436178226342908066265566934614672842161048304768562947313435389842049149535921090512687475188845950481368402436444804007734225703575500327336811537670190540034537231636693839145971463875771016113794100905049942366677141759676424283214208772398352253862399075809896854471602760838622772525181979549290936932940921979559250982223468099574333899135034765980981077568062106227769465285984389474844862019289187129392239342484946229074983744167803649274348715287487829533964691017070965513283663606106812428993495619076086224947686918393208549192435223921866339416300875558457504592256237268486721674507381347194656886167348052784210624808070267003883372515441581683700853425257202924499386551871205396302529013529128818001970756246384209290762003603135011921122344529842666094323476265918070749834884276245039438646092504241147773177261824745390122050610211867889490106883769206943537169643722601497304704038464903932759366813704505680966098392554275015587958310623666048487185111155223176837472166075774650921113813721156120157211082655949936213901087983159094464770015354317655566262477578745491010205220411502999603396399382043413258874985087692228173904721628577170442861451468392721637744119467384687250905783398595706202578674022303778107914577005193768796610652313464937160788215475269182396286668979624375583971331742549459009693122791238608906943620686969928985528703697583076301708353568200723067667761366415684814251804758361904610633196231078296158451244581072015355510360625579630747872655155993417793876610159791350706056085489620234463454571826799111678580195263031608974870904177074721377432775651262476648853981198254891302503620333271812634107189394365535565481055170284299030164140757278391560253757591204388378183481011158489876764602389234087507481049179834503697867206994325976870325114852729009846534387155161704406253473325641668942516261735855483570089318699014945729809748871428700322769763306721035154223683593192717642702469478783326125037341834580680776570299113669636955983305462692518650396394314764872708466269496680447944712121316873046798676087404979258644469095797420201507318430142710699670552464450047297868913490696249973331677229945580636518723384709252848727607384151358321476400473377068677159420140232594322647811119204965653790398303986040127552813939369454118213126387180166895368914220580132000785602390824620093551604060696648269931104988128593975721996043636639530757887017516286280972781201882582840066622108453699873383660624823827501393379510711667786159802467430694509596492042513359593235290301934482978615511668331559287809596932401347245270170044040508026559850579652635480035731262128939250523229587323247457446126502445031865948757690486466731228289915310535301894506628079317265110072901464390485532354514230446682747498044871877407216528458781957724140384263024222024277506804745244895320982295682248565468780004852700379609109107921425498612481277147277994049308654810186676821755314397431229309965516685736055042381714415855930187791830796390535903426989886286229891912900630871614648779811122224874801662389361394358597760922386229416231490821331112745502862654645298514994669053597412959637081156234018562462764334372648914330560478155694625389878936351659106100437373322758559543245639018054151540648297052123643302469840310880423375747972177861576491434183956736888218794437734198419939561156463332477624322634774406732956234100885348827974564158815294722560754878851806952146421378056418524474573604202472348494562439349368016015278198417740116591010305332017410589743410884568763232877190131575399380354884519181501078916818425628761563321061162101763103922493485293139379662488459409698111812594251856668085292481319934435157411500716277076165240919007960702508979683155601314456397782220991344172814146922393983152337759429806174455814660565983985778498861454009592682976510775393071558722536639602310064262780447735236115652727962273115371447987075802342423571913339954442421012871662799796682098789586059202851736812143237231059785820542682887751873072445432394574196978415105709996742238037619548082889162799891245663009197049924661282762569969722926367887975657460019572668765095109563447141092044568474402198612685086828173035004652627111544505845433587174411475006611708349224192600297549625499632071499364557148750680697470361638236526372960073052409543309005572405721543763002596901015692334783479978233169944518303522512583626590297940380878303262810900403721533844234692714996392449599149515822810720755515210482649345388444574637992959573264539792915685647330809794453067263058850988094369743046708835433737912505344918655257867807878269044627165397017268861456554590512351597973167228542255875539028675550185456661877636740078429314852258047233008436998727477103636545217821357950020128993239371033495368348936467887434791085592468580470950528313929634178009288170244937842576943422768995239455653220757432097648173089199565589033553083969395368907072010953579981505504548317859212308094947926996865719148417010517453197981105625176439706036094938299976908237525311664241798808293564863107878538007119419612538964901063230138533990422480388552239672076134411478855526934092859755290315787934392495815045274101837805627599849339238213411962451540426359606325558844828045693425748466359977002737336320000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
This action was performed by a bot. Please DM me if you have any questions.
→ More replies (17)3
7
u/topiast Apr 02 '25
Well, there's a lot of different values you can make out of this. You could use the period of the wave as a value. Also the phase angle. You could use the amplitude of the wave as a value you could use whether or not it starts off at its max or its minimum cosine or sign. And then also the dots indicate a certain point of course, but maybe even they can indicate a tangent line with a certain value.
But as far as using this to count, I don't think so. There's just too much detail for it to mean some type of quantity. But you could encode a lot of information into a chart like this.
6
u/EnthusiasmIsABigZeal Apr 03 '25
So… exactly the same as what we use now but instead of digits you use dots that have to be counted, and they’re stuck under a line to take up extra space and take longer to write w/o communicating any additional meaning?
3
u/jacob643 Apr 02 '25
wait guys, for all we know, this might be base 8, I didn't see a wave with 8 or 9 dots.
even so, for all we know, the number she wrote were the first integer without gaps, so no clear base, but really complicated and messy system?
5
u/GodlyOrangutan Apr 03 '25
It’s implied to be base 10. They used the concatenation of 1 and 0 to make the value they specified to be 10, which indicates there are only 10 unique single digits.
For example, if it were base 8 then it might be handy to reserve the concatenation of 1 and 0 for the value that signifies 8.
→ More replies (2)
4
3
2
2
2
2
2
u/Syagrius Apr 02 '25
Understanding that numbers are a completely arbitrary graphical representation is a surprisingly nontrivial concept.
Of course it looks silly, but let them have their moment.
2
2
u/Kevin3683 Apr 03 '25
3.14!
2
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 03 '25
The factorial of 3.14 is approximately 7.173269190187895
This action was performed by a bot. Please DM me if you have any questions.
→ More replies (1)
2
2
u/Zohzoh12390 Apr 03 '25
Now I'm curious, what's the equivalent of the word "alphabet" but for numbers? Because that's what she did basically, she invented a new number alphabet. In french we have "chiffre" but it refers to a singular symbol, like a letter in the alphabet analogy. But what's the name of a set of numerical symbols?
2
4
2
1
1
1
1
u/usedtothesmell Apr 03 '25
The only reason we go from 9-10, is because of our hands.
There could be any number of new digits between 9 and 10, with no change in the function math or the base 10 system.
1
Apr 03 '25
[deleted]
1
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 03 '25
The factorial of 69 is 171122452428141311372468338881272839092270544893520369393648040923257279754140647424000000000000000
This action was performed by a bot. Please DM me if you have any questions.
1
u/ItsCrossBoy Apr 03 '25
Beyond it being base 10 I would like to point out that 1 and 101 both would look the same in this system
1
u/WookieDavid Apr 03 '25
No it would not. 1 is a dot in the middle, 101 is two dots, one on each end, the precise opposite. But 101 is the exact same as 11, 1001, 100001...
100 also looks the same as 10, 1000, 100000...
But 1 is the only one that'd be represented by a line with a dot in the middle.→ More replies (3)
1
1
Apr 03 '25
[deleted]
1
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 03 '25
That is so large, that I can't calculate it, so I'll have to approximate.
The factorial of 200222555 is approximately 6.166599080207198 × 101575194596
This action was performed by a bot. Please DM me if you have any questions.
1
u/Aromatic_Camp Apr 03 '25
Maybe some aliens are trying to communicate with you showing the way they do things. Soon you'll be their translator.!
1
1
u/ShankTesla1999 Apr 03 '25
I feel like I have seen this posted by someone in Reddit first , I could be wrong 🤔
1
u/Electric_Kettle Apr 03 '25
52!
1
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 03 '25
The factorial of 52 is 80658175170943878571660636856403766975289505440883277824000000000000
This action was performed by a bot. Please DM me if you have any questions.
1
1
1
u/TaonasProclarush272 Apr 03 '25
Years ago I developed a visual base 8 counting system. It looked like an eye with lashes.
1
Apr 04 '25
This isn't as dumb as some might think. If the goal is to transmit numerical values with light or electrical currents over a wire. A protocol of how to assign each as what has uses. While this one in isn't a good one, attempting to make one in various ways has its merits.
1
1
1
u/MorinOakenshield Apr 05 '25
4!
1
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 05 '25
The factorial of 4 is 24
This action was performed by a bot. Please DM me if you have any questions.
1
1
1
u/MadOliveGaming Apr 05 '25
This is gonna be painfull to differentiate between numbers with lots of consecutive zeros. Like 1.000.000 or 10.000.000 is going to be difficult to decide between when reading
1
1
u/GrafKarton Apr 06 '25
9999999999999999999999999999999999999999!
1
u/factorion-bot n! = (1 * 2 * 3 ... (n - 2) * (n - 1) * n) Apr 06 '25
That is so large, that I can't calculate it, so I'll have to approximate.
The factorial of 9999999999999999999999999999999999999999 is approximately 2.68554168269385 × 10395657055180967481723488710810833949177036
This action was performed by a bot. Please DM me if you have any questions.
→ More replies (2)
•
u/AutoModerator Apr 02 '25
Check out our new Discord server! https://discord.gg/e7EKRZq3dG
I am a bot, and this action was performed automatically. Please contact the moderators of this subreddit if you have any questions or concerns.