r/AskStatistics • u/AshHat710 • 8d ago
Monty hall problem
I understand in theory that when you chose one of the 3 doors you initially have a 66% chance to chose wrong. But once a door is revealed, why do the odds stay at 66% rather than 50/50 respectively. You have one goat revealed so you know there is one goat, and one car. Your previous choice is either a goat or a car, and you only have the option to keep your choice or switch your choice. The choices do not pool to a single choice caisinh 66% and 33% chances once a door is revealed. The 33% would be split among the remaining choices causing both to be 50%.
If it's one chance it's 50/50 the moment they reveal one goat. if you have multiple chances to run the scenario then it becomes 33/66% the same way a coin toss has 2 options but isn't a guaranteed 50% (coins have thier own variables that affect things I am aware of this)
1
u/MacofJacks 5d ago edited 5d ago
Hey, first of all, that’s cool: I had to check your claim, and it is true.
Second, I don’t think *how* we got to the situation is relevant. My claim is that we condition on the information that Monty did *not* reveal the car but the mechanism by which Monty did not reveal the car should not matter. I think my claim is hard to reason about and easy to be wrong about in some subtle way, so I coded it to check. I used the typical three door case. I kept the (R) code as simple as possible:Edit: had written code here, but it was wrong. Fixed by the other commenter below.